Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 169: 104128, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657707

RESUMEN

Social wasps exhibit a unique nutritional cycle in which adults feed larvae with prey, and larvae provide adults with larval secretions (LS). LS serves as a vital nutritional source for adults, contributing to the colony's health and reproductive success. The LS nutrient composition has been previously reported in various wasp species, yet these analyses focused solely on worker-destined larvae, overlooking the potential caste designation effects on LS composition. Using metabolomics techniques, we analysed and compared the metabolite and nutrient composition in LS of queen- and worker-destined larvae of the Oriental hornet. We found that queen-destined LS (QLS) contain greater amounts of most metabolites, including amino acids, and smaller amounts of sugars compared to worker-destined LS (WLS). The amino acid-to-sugar ratio in QLS was approximately tenfold higher than in WLS. Thus, as the colony transitions from the production of workers to the production of reproductives, it gradually experiences a nutritional shift that may influence the behaviour and physiology of the adult nest population. This caste-specific metabolite profile and nutrient composition of LS reflect the differences in the diet and physiological requirements of worker- and queen-destined larvae and may play a critical role in caste determination in social wasps.

2.
aBIOTECH ; 4(3): 224-237, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37970465

RESUMEN

Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00103-x.

3.
Plant Cell ; 36(1): 174-193, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37818992

RESUMEN

The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.


Asunto(s)
Petunia , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Petunia/genética , Petunia/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Ceras , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 193(1): 611-626, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37313772

RESUMEN

Seeds are an essential food source, providing nutrients for germination and early seedling growth. Degradation events in the seed and the mother plant accompany seed development, including autophagy, which facilitates cellular component breakdown in the lytic organelle. Autophagy influences various aspects of plant physiology, specifically nutrient availability and remobilization, suggesting its involvement in source-sink interactions. During seed development, autophagy affects nutrient remobilization from mother plants and functions in the embryo. However, it is impossible to distinguish between the contribution of autophagy in the source (i.e. the mother plant) and the sink tissue (i.e. the embryo) when using autophagy knockout (atg mutant) plants. To address this, we employed an approach to differentiate between autophagy in source and sink tissues. We investigated how autophagy in the maternal tissue affects seed development by performing reciprocal crosses between wild type and atg mutant Arabidopsis (Arabidopsis thaliana) plants. Although F1 seedlings possessed a functional autophagy mechanism, etiolated F1 plants from maternal atg mutants displayed reduced growth. This was attributed to altered protein but not lipid accumulation in the seeds, suggesting autophagy differentially regulates carbon and nitrogen remobilization. Surprisingly, F1 seeds of maternal atg mutants exhibited faster germination, resulting from altered seed coat development. Our study emphasizes the importance of examining autophagy in a tissue-specific manner, revealing valuable insights into the interplay between different tissues during seed development. It also sheds light on the tissue-specific functions of autophagy, offering potential for research into the underlying mechanisms governing seed development and crop yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , Plantas/metabolismo , Germinación/genética , Plantones/genética , Plantones/metabolismo , Autofagia/genética , Regulación de la Expresión Génica de las Plantas
5.
Plant Cell ; 35(6): 1984-2005, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36869652

RESUMEN

Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Oscuridad , Amigos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Cell Death Dis ; 14(1): 35, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653345

RESUMEN

The SIRT6 deacetylase has been implicated in DNA repair, telomere maintenance, glucose and lipid metabolism and, importantly, it has critical roles in the brain ranging from its development to neurodegeneration. Here, we combined transcriptomics and metabolomics approaches to characterize the functions of SIRT6 in mouse brains. Our analysis reveals that SIRT6 is a central regulator of mitochondrial activity in the brain. SIRT6 deficiency in the brain leads to mitochondrial deficiency with a global downregulation of mitochondria-related genes and pronounced changes in metabolite content. We suggest that SIRT6 affects mitochondrial functions through its interaction with the transcription factor YY1 that, together, regulate mitochondrial gene expression. Moreover, SIRT6 target genes include SIRT3 and SIRT4, which are significantly downregulated in SIRT6-deficient brains. Our results demonstrate that the lack of SIRT6 leads to decreased mitochondrial gene expression and metabolomic changes of TCA cycle byproducts, including increased ROS production, reduced mitochondrial number, and impaired membrane potential that can be partially rescued by restoring SIRT3 and SIRT4 levels. Importantly, the changes we observed in SIRT6-deficient brains are also occurring in aging human brains and particularly in patients with Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis disease. Overall, our results suggest that the reduced levels of SIRT6 in the aging brain and neurodegeneration initiate mitochondrial dysfunction by altering gene expression, ROS production, and mitochondrial decay.


Asunto(s)
Sirtuinas , Animales , Humanos , Ratones , Encéfalo/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología
7.
Nat Ecol Evol ; 4(3): 437-452, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094541

RESUMEN

Evolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages in bacterial populations have so far prevented a detailed elucidation of evolutionary dynamics. Here, we overcome this hurdle by developing a chromosomal-barcoding technique that allows simultaneous tracking of approximately 450,000 distinct lineages in Escherichia coli, which we use to test the effect of sub-inhibitory concentrations of common antibiotics on the evolutionary dynamics of low-frequency lineages. We find that populations lose lineage diversity at distinct rates that correspond to their antibiotic regimen. We also determine that some lineages have similar fates across independent experiments. By analysing the trajectory dynamics, we attribute the reproducible fates of these lineages to the presence of pre-existing beneficial mutations, and we demonstrate how the relative contribution of pre-existing and de novo mutations varies across drug regimens. Finally, we reproduce the observed lineage dynamics by simulations. Altogether, our results provide a valuable methodology for studying bacterial evolution as well as insights into evolution under sub-inhibitory antibiotic levels.


Asunto(s)
Escherichia coli , Evolución Molecular , Antibacterianos , Mutación
8.
J Exp Bot ; 68(13): 3487-3499, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28586477

RESUMEN

Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.


Asunto(s)
Arabidopsis/genética , Cromatografía de Afinidad , Metabolómica , Nucleósido-Difosfato Quinasa/genética , Proteínas de Plantas/genética , Proteómica , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...